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Introduction to Further Maths
Complex Numbers
Factorising Cubic Expressions
Solving Quadratic Equations
Summing Series

Instructions: 
Read through the explanations before each exercise, then complete all questions.  Do not write in the booklet – get some A4 paper and keep it together in a folder.  Mark the questions yourself (answers are at the back).  If there are questions you don’t understand, look at the answers and try and work out how to get them, but don’t do this unless you’re really stuck.

Introduction to Further Maths
The imaginary number i


The letter i represents a number, in the same way that  and do.


 3.141592654...			1.414213562... 		
Both of these are decimals which go on forever.
i is a new type of number.  It is not possible to find a decimal that is approximately the same as i.  

It has the special property that i2 = -1.   This means that i = . 
This means that you can now find the square root of a negative number.
To deal with these numbers, you need to know some things about surds:


A surd is a number involving a square root, such as or 
Some surds can be simplified or split into the product of two surds

e.g.	1. 

	        =

	 2. 
Exercise A:  Simplify these surds
1. 




		2.   	3.   	4.  	5.   

6. 




		7.   	8.   	9.   	10.   
You can now do the same sort of thing with negative numbers

e.g.	1.   	

	  	              =  
2. 



            = 		(note that this is different to )
Exercise B:  Simplify
1. 



		2.   		3.   		4.   

5. 



		6.   		7.   		8.   
Complex numbers
A complex number has real and imaginary parts.
e.g.	For the complex  number z = 3 + 2i
	The real part is 3, the imaginary part is 2
	Note that the imaginary part is not 2i.  It is just 2.  This means that the imaginary part is real.

Adding and subtracting complex numbers is fairly straight forward.  Just combine the real and imaginary parts.
e.g. 	1.   (2 + 3i) + (5 + 6i) = 7 + 9i
	2.   (-1 + 4i) + (5 – 8i) = 4 – 4i
	3.   (3 – 7i) – (-1 + 3i) = 4 – 10i
Exercise C: Add or subtract these:
1. (8 + 6i) + (6 + 4i)		2.   (9 – 3i) + (-4 + 5i)		3.   (2 + 7i) – (5 + 3i)

4. (5 – i) – (6 – 2i)			5.   (-2 – 5i) + (2 + 7i)		6.   (11 + 4i) – (3 + 4i)

Complex numbers can be multiplied by real or imaginary numbers
e.g	2 (3 + 4i) = 6 + 8i
	4i × 6i = 24i2 = 24 × -1 = -24
	-3i (-2 – 5i) = 6i + 15i2 = -15 + 6i 		(We normally write it this way round, not 6i – 15)
Exercise D:  Multiply these:
1. 4 (3 + 2i)		2.  -3 (2 – 5i)		3.  2 (-5 – 4i)		4.  2i × 6i
5. 8i × -3i			6.   -4i × -2i		7.   2i (3 + 3i)		8.   -4i (2 + 7i)
9. –i (5 – 2i)		10.   5i (-3 + 2i)





Multiplying two complex numbers is a bit like expanding two bracketed surds.


e.g.   	1.  				2.  	


	           =				           =	


	           =					          =	
Practice on these:
Exercise E: multiplying surds
1. 

 		2.   		

3. 

		4.  	

5. 

		6.  

Multiplying two complex numbers works in a similar way.
e.g. 		( 2 + 3i)(4 + 2i)
	          =	8 + 4i + 12i + 6i2
	          =	8 + 16i – 6
	          =	2 + 16i

Exercise F: multiply these complex numbers
1. (9 + 2i)(1 + 3i)		2.   (4 – i)(3 + 2i)		3.   (5 – 3i)(6 – 3i)	4.  (10 + i)(12 – 3i)
5. (3 + 11i)(2 + 7i)		6.   (7 + 3i)2		7.   (4 + i)(4 – i)		8.   (5 + 3i)(5 – 3i)


Introduction to Further Maths
Factorising cubic expressions
You should know how to multiply out brackets to get quadratic expressions
e.g.	 (x + 4)(x – 7)
          = 	  x2 – 3x – 28 
And how to factorise quadratic expressions
e.g 	x2 + x – 12
         =	(x – 3)(x + 4) 
Multiplying out three brackets is not much harder
e.g.	(x + 1)(x + 4)(x – 2) 	(multiply out the second two brackets, leave the first one alone)
=    (x + 1)(x2 + 2x – 8)	(multiply each of the terms in the first bracket by each of the terms 
                                                           in the second bracket)
         =	x3 + 2x2 – 8x + x2 + 2x – 8      (it is possible to skip this line of working if you’re good enough)
         = 	x3 + 3x2 – 6x – 8 
Exercise A:
1. (x + 2)(x – 3)(x – 4)		2.   (x – 5)(x – 1)(x – 7)		3.    (2x + 3)(x + 2)(x + 8)
There is a link between the three numbers in the brackets and one of the numbers in the answer.  Can you spot it?
Moving on: you should remember solving quadratic equations by factoring:
e.g.	x2 + 2x – 15 = 0
	(x – 3)(x + 5) = 0
The two solutions are x = 3 or x = -5 
Notice that if you put either of these numbers into the original expression you get zero
e.g.	if x = 3, then 	x2 + 2x – 15
		           = 	(3)2 + 2(3) – 15 
		           =	9 + 6 – 15
		           =	0
Check it works with -5 as well
This can be used to help find the brackets.  If you put x = 3 into the expression and get zero, you know straight away that (x – 3) is one of the two brackets.  Just guessing a number to put in might take ages, but you can make it easier.
e.g.	if you are given the equation 		x2 + 6x – 7 = 0
If you factorise this expression into two brackets such as (x + a)(x + b), then you can see that the number on the end of the expression (in this case, -7) comes from multiplying a and b together.  This only works if a and b are factors of this number.  (Strictly speaking, this is a misuse of the word factor.  Please forgive me)
The only numbers worth trying are: 1, 7, -1 or -7
Try x = 1		(1)2 + 6(1) – 7 = 0
			So (x – 1) is one of the brackets
Usually it is not necessary to carry on trying the other numbers – you can just work out what the other bracket should be.  However, just to check you get it:
Try x = 7		(7)2 + 6(7) – 7 = 84
			So (x – 7) is not one of the brackets
Try x = -7		(-7)2 + 6(-7) – 7 = 0
			So (x + 7) is the other bracket
			Make sure you can see why it’s (x + 7)
Now onto cubics.
e.g 	Factorise 	x3 – 4x2 + x + 6
This goes into three brackets such as (x + a)(x + b)(x + c)
 The numbers a, b and c multiply to make + 6.  This means that all three of a, b and c must be factors of 6 (or they could be ‘negative factors’)
The possible numbers are: 	1, 2, 3, 6, -1, -2, -3, -6 
Try each of these until one works.  Put the number into the expression.  If you get zero, you have the factor.
Try x = 1		(1)3 – 4(1)2 + (1) + 6 = 4		no good
Try x = 2		(2)3 – 4(2)2 + (2) + 6 = 0		this works
			So (x – 2) is one of the three brackets
This means that		x3 – 4x2 + x + 6
		           = (x – 2)(x + b)(x + c)
To proceed from here, it makes sense to think of the expression as
x3 – 4x2 + x + 6
		           = (x – 2)(some unknown quadratic expression)
		     or  	(x – 2)(x2 + px + q)
This idea is to find this quadratic, then factorise it.  Start by working out what p must be in order to multiply out to give you the required number of x2 s.
If you were to multiply out the brackets (x – 2)(x2 + px + q), you would have -2x2 from multiplying the -2 in the first bracket by the x2 in the second.  The original cubic expression has -4x2.  This means we need to find another -2x2.  The only way to get these is to make p = -2.  Then, when you multiply the x in the first bracket by the px in the second bracket, you get what you need.
So we have 		x3 – 4x2 + x + 6
		           = (x – 2)(x2 – 2x + q)
It’s tempting to spot that q × -2 must be 6 to give you the number on the end.  Try not to rely on this, but use it to check at the end.
Instead, consider how many x s there are.  Multiplying out the brackets would leave you with +4x so far.  You need to end up with + x.  Making q = -3 is the only way to do this.  Then you can check that  -2 × -3 = 6, which is the number on the end.
Finally, we get to 	x3 – 4x2 + x + 6
		           = (x – 2)(x2 – 2x – 3)		then factorise the quadratic
		          =	(x – 2)(x + 1)(x – 3)
That took ages, but you’ll get to be quick at them.  Try these:
Exercise B:
1. x3 + 5x2 + 2x – 8				2.   x3 – 9x2 + 26x – 24

3. x3 – 6x2 – x + 30				4.   x3 + 14x2 + 59x + 70

5. x3 – 3x2 + 4				6.   x3 – x2 – 9x + 9

These last two have something extra to them but they can still be done by the same method.

7. 2x3 + 7x2 + 2x – 3 			8.  6x3 – 5x2 – 17x + 6	


Introduction to Further Maths
Solving quadratic equations
Some quadratic equations can be solved by factorising:
e.g. 	x2 – x – 12 = 0
	(x – 4)(x + 3) = 0
	x = 4 or x = -3
You can also solve them by completing the square:
e.g.	x2 – 4x – 1 = 0
	(x – 2)2 – 5 = 0
	(x – 2)2 = 5

	x – 2 = ±

	x = 2 ± 
The third method is the quadratic formula:

	If ax2 + bx + c = 0, then x = 
e.g. 	3x2 – 5x + 1 = 0
	a = 3, b = -5, c = 1

	x = 

	   =   		(you can sometimes simplify this, but you can leave it for now)

Exercise A:
Solve these using whichever method you like, but you must use each of the three above methods at least twice each.
1. x2 + 5x + 6 = 0		2.   x2 – 4x + 1 = 0	3.   x2 + x – 3 = 0		4.   x2 – 7x – 5 = 0

5. x2 + 8x – 8 = 0		6.   x2 + 9x – 2 = 0	7.   x2 – x – 30 = 0	8.   x2 – 10x + 3 = 0

Equations with complex roots:
Sometimes, when using the quadratic formula, you get stuck because the discriminant (b2 – 4ac) is negative and you can’t take the square root of a negative.  But now you can do this, all quadratic equations have two solutions.
e.g.	x2 + 2x + 5 = 0

	x = 

	   = 

   = 

   = 

Try these:
Exercise B:
1. z2 – 2z + 5 = 0		2.   z2 + 2z + 2 = 0		3.  z2– 6z + 58 = 0

4. z2 – 4z + 13 = 0		5.   z2 + 6z + 34 = 0		6.   4z2 – 4z + 17 = 0

7. z2 + 4z + 6 = 0		8.   4z2 – 28z + 81 = 0		9.   5z2 + z + 2 = 0


Introduction to Further Maths
Summing series – sigma notation
You have met the idea of a number sequence – a list of numbers which follow a certain pattern
i.e.  	Square numbers:	 1, 4, 9, 16, 25, 36, ...
	nth term is 3n – 1:	2, 5, 8, 11, 14, 17, ...
A series is when you add together the terms of a sequence.
e.g.  For the sequence with nth term  = 4n + 1, the sum of the first 5 terms is:
			5 + 9 + 13 + 17 + 21 = 65

There is some useful notation for this.  The symbol (the Greek letter sigma) means ‘add up what follows’.  
You will see things like this:

	where ur is a function of r
For the above example, this would look like:

			(4×1 + 1) + (4×2 + 1) + (4×3 + 1) + (4×4 + 1) + (4×5 + 1)
       =	5 + 9 + 13 + 17 + 21 = 65
You put r = 1 into the function (in this case ur = 4r + 1), then you put r = 2 in and add it on, then r = 3 etc.
This is especially useful when there are lots of terms.  Look at this one:

		Write out all of the terms if you want!
You can also write down a series of unknown length:

		1 + 2 + 3 + 4 + 5 + ... + (n – 2) + (n – 1) + n

		12 + 22 + 32 + ... + (n – 1)2 + n2 + (n + 1)2


You don’t have to start with r = 1.  You can also use another letter; there is nothing special about r.

(10 – 32) + (10 – 42) + (10 – 52) + (10 – 62)
	          = 1 + -6 + -15 + -26
	          = -46

Exercise A:  Write out these series.  Where there are a know number of terms, give the sum of the series.  Where there are an unknown number of terms, write the first three and the last two terms. (warning – some of them look a bit messy)
1. 



		2.   		3.  		4.  

1. 



 			6.   	7.   		8.   

This can be done the other way round.
e.g.  Write the following using sigma notation:

1.   1 + 2 + 3 + 4 + .... + 17	= 	

	2.   (3 × 2) + (5 × 3) + (7 × 4) + ...	+ (15 × 8)	=	
Exercise B: write these using sigma notation
1. 5 + 11 + 17 + 23 + ... + 59

1. 28 + 25 + 22 + 19 + 16 + ... + -8

1. 2 + 22 + 23 + 24 + ... + 2n

1. 


1. (1)(33 – 1) + (2)(43 – 1) + (3)(53 – 1) + ... + (7)(93 – 1)


It turns out that sometimes there is a simple formula for a series

e.g.		
There are more formulae, but one will do for now.  We can now quickly work out some series

e.g.		
Also, we can calculate sums that don’t start with r = 1
e.g.		14 + 15 + 16 + ... + 23

   	           =	

	          =   

	          =  	   	
	          =	276 – 91
	          =	185
Exercise C: find the sums of these series
1. 1 + 2 + 3 + 4 +... + 19

1. 1 + 2 + 3 + 4 + ... + 100

1. 1 + 2 + 3 + 4 + ... + 999

1. 5 + 6 + 7 + 8 + ... + 19

1. 50 + 51 + 52 + 53 + ... + 100

1. 101 + 102 + 103 + ... + 150

1. 2 + 4 + 6 + 8 + ... + 20	(this one is a little different – think about it)


Answers
Complex Numbers:
Exercise A: simplifying surds
1. 




		2.   	3.   	4.   	5.   

6. 



		7.   	8.   	9.   	10.   21
Exercise B: Simplifying negative square roots
1. 3i 		2.   8i		3.  11i		4.   21i

5. 



		6.   	7.   	8.   
Exercise C: Adding and subtracting complex numbers
1. 14 + 10i			2.   5 + 2i		3.  -3 + 4i
4. -1 + i			5.   2i			6.   8
Exercise D: multiplying complex numbers part 1
1. 12 + 8i		2.   -6 + 15i		3.   -10 – 8i		4.   -12
5. 24		6.   -8			7.   -6 + 6i		8.   28 – 8i
9. -2 – 5i		10.   -10 – 15i
Exercise E: multiplying out surds
1. 


		2.   		3.   
4. 
		5.   9			6.   -31
Exercise F: multiplying complex numbers part 2
4. 3 + 29i		2.   14 + 5i		3.   21 – 33i	 	4.   123 – 18i
5. -71 + 43i	6.   40 + 42i		7.   17		 	8.   34
Factorising Cubic Expressions
Exercise A: Multiplying out three brackets:
1. x3 – 5x2 – 2x + 24	2.   x3 – 13x2 + 47x – 35		3.  2x3 + 23x2 + 62x + 48
Exercise B: Factorising cubic expressions:
1. (x – 1)(x + 2)(x + 4)	2.   (x – 2)(x – 3)(x – 4)		3.   (x + 2)(x – 5)(x – 3)

4. (x + 7)(x + 2)(x + 5)	5.   (x – 2)(x – 2)(x + 1)		6.   (x + 3)(x – 3)(x – 1)

7. (2x – 1)(x + 3)(x + 1)	8.   (2x + 3)(3x – 1)(x – 2)
Solving Quadratic Equations
Exercise A: real roots
1. 


x = -2 or -3		2.   x = 2 ± 		3.  x = 	4.  x = 
5. 


x = -4 ± 		6.   x = 	7.   x = 6 or -5		8.   x = 5 ± 
Exercise B: complex roots
1. 1 ± 2i		2.  -1 ± i		3.  3 ± 7i  	4.   2 ± 3i	5.   -3 ± 5i 	




6.   		7.   		8.   		9.   
Summing series
Exercise A: summing series
1. 70	 	2.  100			3.   110			4.  -6

5. 12 + 22 + 32 + ... + (n – 1)2 + n2		

6. 6.   (13 – 12) + (23 – 22) + (33 – 32)  ... + ((k – 1)3 – (k – 1)2) +  (k3 – k2)
 or     0 + 4 + 18 + ... + ((k – 1)3 – (k – 1)2) + (k3 – k2)
7. 
		
8. 

Exercise B: using sigma notation
1. 


			2.   		3.   	
4. 

		5.  
Exercise C: summing series
1. 190		2.   5050		3.   499500		4.   180
5. 3825		6.   6275		7.   110
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